
Department of Electrical and Computer Engineering
University of Maryland at College Park

ENEE 642: Software Systems Implementation
Spring 2000, Prof. D. Stewart

ilding
s arise

by two
e same
percent

nam-
here
. Such
the code

good
guish
nternal,
rom

able 2.
com-

er part.

, make
he code
ss and
espe-

nc-
Handout 3: Naming and Style Conventions

Creating software without naming and style conventions is equivalent to building homes without bu
codes. Without conventions, every programmer in an organization does their own thing. Problem
whenever someone else has to look at the code. For example, suppose the same module is written
different programmers. The code of one programmer takes 1 hour to understand and verify, while th
code by the other programmer takes 1 day. Using the first version instead of the second is an 800
increase in productivity!

The primary factor that affects the readability of code is the presence of naming conventions. If strict
ing conventions are followed, simply looking at a symbol quickly tells the reader what the symbol is, w
it is defined, and whether it is a variable, constant, macro, function, type, or some other declaration
conventions must be posted, just as a legend must appear on a design diagram, so that any reader of
knows the conventions.

This section describes the naming and style conventions that are enforced in theSoftware Engineering for
Real-Time Systems (SERTS) Laboratory(www.ece.umd.edu/serts) at the University of Maryland and used
in the development of Echidna.

1. NAMING CONVENTIONS

Naming conventions are extremely important. Software maintainability is directly related to the use of
naming conventions. By looking at any symbol name, you should immediately be able to distin
between constants, variables, macros, and functions, as well as whether something is local, global, i
or external. Consistently using the naming conventions in Table 1 will yield all of this information f
simply the symbol name.

1.1 Pairing Function Names

You should always name functions such that each exported function has a converse, as shown in T
By defining functions as pairs, there are two important benefits. It forces you, the designer, to ensure
pleteness. It also allows you to create the two portions simultaneously and use each part to test the oth

Make sure that pairings are consistent. For example, if the conventions shown in Table 2 are used
sure the converse of send is not read and that the converse of create is not finish. If you are creating t
for reading and writing at the same time, you can test both pieces of code by writing from one proce
reading from the other. It is worthwhile to always use the same conventions for similar components,
cially if they are in different modules.

1.2 Compounding Function Names

To allow for further decomposition, put names in “big object” to “small object” order for compounded fu
tion names instead of in the order that it would naturally be read. For example, if modulexyzhas a secondary
structurexyzFile_t, then functions that operate on that structure should be named the following:

Handout 3: Naming and Style Conventions Page 2 of 11
DRAFT
Table 1: Naming conventions for files, variables, types, and functions in C.

Symbol Description Symbol Description

xyz.h File containing header info
for module xyz. Anything
defined in this file MUST
have an “xyz” or “XYZ”
prefix and be exported by
the module.

xyz.c File containing code for
module xyz.

xyz_t Primary data type for
module xyz. Define in
xyz.h

Abcde_t
AbcdeFgh_t

Internally-defined data
type . Define at top of
xyz.c. Note that data types
and functions for internal
use start with a capital
letter.

xyzAbcde_t
xyzAbcdeFgh_t

Secondary data type
“Abcde” for module xyz.
Define in xyz.h. All enum’s
should be typedef’d with
this format.

_ABCDE
_ABCDE_FGH

Internal constant . Define
at top of xyz.c. E.g., if
ABCDE_FGH is used
instead of _ABCDE_FGH,
it implies module abcde.

XYZ_ABCDE
XYZ_ABCDE_FGH

Constant for module xyz.
For internal or external
use. Define in xyz.h.

_ABCDE() #define ’d macro for
internal use only. Define
in xyz.c.

XYZ_ABCDE() #define ’d macro for
module xyz. For internal
or external use. Define in
xyz.h.

_abcde
_abcdeFgh

Internal global variable .
Define as static at top of
xyz.c.

xyz_abcde
xyz_abcdeFgh

Exported global variable
defined for module xyz.
Declare as extern in xyz.h
and define in xyz.c.
Global variables should be
AVOIDED!

abcde Local variable . Define
inside a function. Also
define fields within a
structure using this
convention.

xyzAbcde()
xyzAbcdeFgh()

Exported function
“Abcde” defined in module
xyz. Declare as extern in
xyz.h and define in xyz.c.

Abcde()
AbcdeFgh()

Internal function .
Declare prototype as static
at top of xyz.c. Define
function at bottom of xyz.c
after declaring all exported
functions.

Table 2: Naming conventions for pairing function names

xyzCreate ↔ xyzDestroy xyzAlloc ↔ xyzFree xyzRead ↔ xyzWrite

xyzInit ↔ xyzTerm xyzOpen ↔ xyzClose xyzSnd ↔ xyzRcv

xyzStart ↔ xyzFinish xyzUp ↔ xyzDown xyzStatus ↔ xyzControl

xyzOn ↔ xyzOff xyzGo ↔ xyzStop xyzNext ↔ xyzPrev
Last Updated: Thursday, February 10, 2000; 3:16 PM D. B. Stewart, University of Maryland

Handout 3: Naming and Style Conventions Page 3 of 11

by the

f the
d you
spond-
ould
aming
ule.

o every-
, then

; and
’t inter-
for

ecause
tter to
-
n
hase.

eria of
pply to
e sys-

the same
-effect,
use the
DRAFT
xyzFileCreate
xyzFileDestroy
xyzFileRead
xyzFileWrite

and not

xyzCreateFile
xyzDestroyFile
xyzReadFile
xyzWriteFile

Note that the last word for any function name should be the verb that represents the action performed
function. The middle words are typically nouns to represent the object(s) on which the verbs act.

1.3 Matching names to modules

This convention makes it obvious that xyzFile is a sub-structure of the xyz module in the first part o
previous example. In the second part, it is not at all obvious. Furthermore, if module xyz grows an
decide to further decompose it, then it will be easy to move the entire xyzFile sub-structure and corre
ing functions to a separate module (e.g., xyzfile). A global search-and-replace of xyzFile to xyzfile w
result in all the necessary changes, and within a few minutes, the decomposition is complete. If this n
convention is not followed, it will take much longer to revise all of the names for use in the new mod

1.4 Abbreviating function names

While it is acceptable to have an abbreviated module name because the name serves as a prefix t
thing, only use obvious abbreviations for function names. If an obvious abbreviation is not available
use the full name. If an abbreviation is used, then use it everywhere in the project.

For example, it can be a convention to always use xyzInit as the initialization code for module xyz
never to use xyzInitialize. As another example, use either snd and rcv, or send and receive, but don
mix the two. Examples of other common abbreviations include intr for interrupt, fwd for forward, rev
reverse, sync for synchronization, stat for status, ctrl for control.

On the other hand, an abbreviation like trfm, supposedly short for transform, is not recommended, b
the abbreviation is not obvious and thus readability is compromised. In such a case, it would be be
choose the function name without abbreviation,xyzTransform(). As another example of over-using abbre
viations, consider the difference betweenxyzFileCreate()andxyzFilCrt(). The second one uses uncommo
abbreviations, and it is difficult to follow when reviewing the code during the software maintenance p
It is much better to use slightly longer names, and avoid confusion as to what the function does.

1.5 Global variables

Global variables are often frowned upon by software engineers, as they violate encapsulation crit
object-based design and make it more difficult to maintain the software. While those reasons also a
real-time software development, it is even more crucial to avoid the use of global variables in real-tim
tems.

In most RTOS’s, processes are implemented as threads or lightweight processes. Processes share
address space to minimize the overhead for executing system calls and switching contexts. The side
however, is that a global variable is automatically shared among all processes. Two processes that
Last Updated: Thursday, February 10, 2000; 3:16 PM D. B. Stewart, University of Maryland

Handout 3: Naming and Style Conventions Page 4 of 11

k the

emory.
n to pre-

, sema-
as the

ions

e even
g.
DRAFT
same module with a global variable defined in it will share the same value. Such conflicts will brea
functionality. Thus, the issue goes beyond just software maintenance.

Many real-time programmers use global variables to their advantage, as a way of obtaining shared m
In such a case, however, care must be taken, as any access to it must be guarded as a critical sectio
vent problems due to race conditions. Unfortunately, most mechanisms to avoid race conditions (e.g.
phores), are not real-time friendly, and they can create undesired blocking. The alternatives, such
priority ceiling protocol, use significant overhead. You can find more information about critical sect
and race conditions in any operating systems textbook.

2. STYLE CONVENTIONS

Using naming conventions is only the first step in creating reusable software. You can make your cod
easier to read and maintain by following proper guidelines for indentation, spacing, and commentin

2.1 Indentation

Indentation must always be 4 spaces. Nested and sub-statements must be indented properly.

An example of proper indenting and location of parentheses and braces:

void funcname(int a) {
code goes here
code goes here
code goes here

} // end funcname

• No space betweenfuncname and (
• Always use a space between) and {
• A comment can be used to show end of function

2.2 if() and if()-else statements

if (condition) {
code goes here

}

if (condition) {
code goes here

} else {
else code goes here

}

• Always use a space betweenif and(, or it will look like a function name.
• Always use a space between) and{

For if-else statements, if you use parentheses on theif part, then use it on theelse part too, and vice versa:

Don’t write:

if (condition) {
line1;
line2;

} else
line3

Do write:
Last Updated: Thursday, February 10, 2000; 3:16 PM D. B. Stewart, University of Maryland

Handout 3: Naming and Style Conventions Page 5 of 11

en you

elpful
se
DRAFT
if (condition) {

line1;
line2;

} else {
line3

} // end if-else

Similarly:

Don’t write:

if (condition)
line1;

else {
line2:
line3

} // end if-else

Do write:

if (condition) {
line1;

} else {
line2:
line3

} // end if-else

Reason: If you need to add any code later on, it is easy to make a mistake and not add the braces wh
add a line of code.

The only time you don’t need the braces is with short one-liners. However, having braces can be h
even then, similar to the example in thefor() loop below. For anything more than one-liners, always u
braces.

For if()-else if()-else, always use braces:

if (condition1) {
line1;

} else if (condition2) {
line2:
line3;

} else {
line4;

} // end if-else

• A comment can be used at the end of the lastif()

2.3 while() and do-while() loops

while (condition) {
code goes here
code goes here
code goes here

} // end while

• Formatting is similar toif
• A comment can be used to show the end of the loop
Last Updated: Thursday, February 10, 2000; 3:16 PM D. B. Stewart, University of Maryland

Handout 3: Naming and Style Conventions Page 6 of 11

re not
DRAFT
do {

code goes here
code goes here
code goes here

} while (condition);

• A semi-colon after) is necessary.
• Always use a space betweendo and{
• Always use a space between} andwhile
• Always use a space betweenwhile and(

2.4 for() loops

An example of proper indenting and location of parentheses, braces, and semicolons:

for (init;condition;increment) {
code goes here
code goes here

}

Always use braces when nesting loops, for all loops except possibly the innermost loop, even if they a
needed:

Don’t write:

for (i=0;i<10;++i)
for (j=0;j<10;++j)

a[i] += j;

Do write:

for (i=0;i<10;++i) {
for (j=0;j<10;++j)

a[i] += j;
}

Reason: Suppose we realize, oops, we forgot toinit a[i] . Modify code:

for (i=0;i<10;++i) {
a[i]=0;
for (j=0;j<10;++j)

a[i] += j;
}

Now, we are forced to add the braces. It is safer to just always use braces.

2.5 switch() statements

An example of aswitch with only one line per case statement:

switch (value) {
case 0: line0; break;
case 1: line1; break;
case 2: line3; break;
default: line3; break;

} // end switch

An example of a switch with small number of short lines percase statement:
Last Updated: Thursday, February 10, 2000; 3:16 PM D. B. Stewart, University of Maryland

Handout 3: Naming and Style Conventions Page 7 of 11

hin
many

writ-
nces. In
s of a
DRAFT
switch (value) {

case 0:
line1;
line2;
line3;
break;

case 1:
line4;
line5;
line6;
break;

default:
line5;
line6;
break;

} // end switch

Following is an example of aswitch with a large number of lines per case, especially when nesting wit
thecasestatements, or if lines are very long. This method minimizes the white space from indenting
times:

switch (value) {
case 0: {

line1;
line2;
line3;

} break;

case 1: {
line4;
line5;
line6;

} break;

default: {
line5;
line6;

} break;
} // end switch

2.6 Blank Lines

Use blank lines wisely to organize your program into blocks. Think of your code as you would a well-
ten document: one thought per paragraph, and each paragraph perhaps containing multiple sente
code, there is one thought per ‘block’, and each block may contain multiple lines of code. Example
block include a loop, a complete if-then statement, or a set of assignments that belong together.

For example:
Last Updated: Thursday, February 10, 2000; 3:16 PM D. B. Stewart, University of Maryland

Handout 3: Naming and Style Conventions Page 8 of 11

extra

ly

repeat
re are

don’t

This is

n

DRAFT
int main(void) {

int a,b,c;
float y,z;

blank line
while (condition) {

statement1;
statement2;
statement3;

}
blank line

// comment belongs to block, so no blank line
// between it and the code.

for (...) {
statement4;
statement5;

}
blank line

if (condition) {
code;

} else {
more code;

}
blank line

return 0;
}

Too many blank lines cause your program to span too many pages when you print it out or require
scrolling when editing. Not enough blank lines makes it difficult to read the code.

2.7 Commenting

You can use either the/* */ or the // method. The// method is usually much easier to type and is high
recommended.

Comments should expose the thought process behind what a line or block of code is doing, rather than
what the code is doing. Saying exactly what the code is doing is often redundant. For example, he
extreme cases of bad comments that are seen very often:

count+=2; // increment counter by 2.
return (sum); // Return the sum

Better comments:

count+=2; // increment by 2 because we only want even numbers
return(sum); // sum could be negative if error in input data

If a comment would be redundant, and there is really no “thought” that needs to go behind it, then
comment it. Useless comments are worse than no comments.

Comments are always indented with respect to the code, so that the left-most column is the code.
accomplished in either of two ways:

• Always start at column 40 (or at column 32. Just make sure it starts at the same colum
throughout the code), so that your code looks like two columns.

• The left column is code, the right column is comments.

E.g.Bad commenting:
Last Updated: Thursday, February 10, 2000; 3:16 PM D. B. Stewart, University of Maryland

Handout 3: Naming and Style Conventions Page 9 of 11

nden-

paced
f code
DRAFT
// comment goes here in Column 8, but code in column 12
abc = def;
// the problem is that the code gets lost.

E.g. Good commenting:

abc = def; // comment goes here in Column 40

// long comment can go here, indented immediately before the lines
// of code to which it pertains.

def = pqr+uvw;

When a function, loop, or if-else statement is more than 10 or so lines, or you have multiple levels of i
tation, put a// end xyzcomment after the closing brace. For example:

void funcname(int mmax, int nmax, int pmax) {
int m,n,p;

for (m=0;m<mmax;+m) {

for (n=0;n<nmax;+n) {
for (p=0;p<pmax;+p) {

code goes here
} // end for p
more code goes here
more code goes here

} // end for n
more code goes here

} // end for m

more code goes here

return;
} // end funcname

Define code in “paragraphs.” That is, each thought is single-spaced (like a small loop), and double-s
between different “thoughts”. Put a comment to begin each paragraph that explains what the block o
is doing in high-level terms.

Example:
Last Updated: Thursday, February 10, 2000; 3:16 PM D. B. Stewart, University of Maryland

Handout 3: Naming and Style Conventions Page 10 of 11

rations.
DRAFT
static void _sample_function (void) {

// single space variable declarations
// double space after them.

int i,j;
int a[N],b[N];

// single space here
for (i=0;i<N;++i)

a[i]=i;

// then double space before next thing, but single space
// the “paragraph”.

if (b[i] < a[i]) {
// you can put a comment here

printf(“b[i] is smaller”);
} else {

printf(“b[i] is bigger”); // or put a comment here
}

return;
}

Note theif()-else bracket and indenting. Another example:

// comment for entire if-else structure
if (condition1) {

// comment for condition 1
code for condition 1
code for condition 1
code for condition 1

} else if (condition 2) {
// comment for condition 2

code for condition 2
code for condition 2
code for condition 2

} else {
// comment for else part

code for else part
code for else part
code for else part

}

2.8 Expressions and Conditions

Spaces in equations and conditions are optional. Use them to help you quickly see the order of ope
You can also add parentheses, even if they are not needed.

Examples:

Hard to read:

x = 4 * y + 3 * z / 2;
x=4*y+3*z/2;

Easier to read:

x = 4*y + 3*z/2;
Last Updated: Thursday, February 10, 2000; 3:16 PM D. B. Stewart, University of Maryland

Handout 3: Naming and Style Conventions Page 11 of 11

ense.

are.
doing,
us code
ge; this

ance
uring
e
with

odify
DRAFT
Hard to read:

if (x == 3 * z + 4&&y == 2 - z) {

Easier to read:

if ((x == 3*z + 4) && (y == 2-z)) {

If you have really long conditions, put one condition per line, or format it in such a way that makes s
E.g.:

if ((long-condition-one) &&
(long-condition-two) ||
(long-condition-three)) {

3. SUMMARY

The goal of strictly following naming and style conventions is to minimize the maintenance of the softw
That is, sometime after the code is written, someone will need to look at the code, determine what it is
and make one or more changes to it. The difference between code that follows strict conventions vers
with no conventions could mean the difference between taking 1 hour versus 1 day to make the chan
is an 800% productivity factor!

It is difficult to prove that following these conventions lead to those kinds of savings during the mainten
phase. But after experiencing both methods, you will quickly learn that conventions are important. D
this semester, youmustfollowing these conventionsexactly. After one semester of using them, you will b
on your own; if you don’t like them, don’t use them. But more than likely, most of these conventions,
maybe a few of your own minor customizations, will be adopted.

The one guarantee I make: you will learn to appreciate them when you are required to read and m
someone else’s code, and they did not follow any such conventions!
Last Updated: Thursday, February 10, 2000; 3:16 PM D. B. Stewart, University of Maryland

	Handout 3: Naming and Style Conventions
	1.� Naming Conventions
	1.1 Pairing Function Names
	1.2 Compounding Function Names
	1.3 Matching names to modules
	1.4 Abbreviating function names
	1.5 Global variables

	2.� Style Conventions
	2.1 Indentation
	2.2 if() and if()-else statements
	2.3 while() and do-while() loops
	2.4 for() loops
	2.5 switch() statements
	2.6 Blank Lines
	2.7 Commenting
	2.8 Expressions and Conditions

	3.� Summary

